Plumbing systems - how to fix them?

Dodane: 29-07-2016 15:24
Plumbing systems - how to fix them? plumbers Wandsworth

Valves - how to control them?

Many valves are controlled manually with a handle attached to the stem. If the handle is turned ninety degrees between operating positions, the valve is called a quarter-turn valve. Butterfly, ball valves, and plug valves are often quarter-turn valves. If the handle is circular with the stem as the axis of rotation in the center of the circle, then the handle is called a handwheel. Valves can also be controlled by actuators attached to the stem. They can be electromechanical actuators such as an electric motor or solenoid, pneumatic actuators which are controlled by air pressure, or hydraulic actuators which are controlled by the pressure of a liquid such as oil or water. Actuators can be used for the purposes of automatic control such as in washing machine cycles, remote control such as the use of a centralised control room, or because manual control is too difficult such as when the valve is very large. Pneumatic actuators and hydraulic actuators need pressurised air or liquid lines to supply the actuator: an inlet line and an outlet line. Pilot valves are valves which are used to control other valves. Pilot valves in the actuator lines control the supply of air or liquid going to the actuators.

The fill valve in a toilet water tank is a liquid level-actuated valve. When a high water level is reached, a mechanism shuts the valve which fills the tank.

In some valve designs, the pressure of the flow fluid itself or pressure difference of the flow fluid between the ports automatically controls flow through the valve.

Źródło: https://en.wikipedia.org/wiki/Valve


Wikipedia about tubes and pipes and how they are different

The difference between pipes and tubes is simply in the way it is sized. PVC pipe for plumbing applications and galvanized steel pipe for instance, are measured in IPS (iron pipe size). Copper tube, CPVC, PeX and other tubing is measured nominally, which is basically an average diameter. These sizing schemes allow for universal adaptation of transitional fittings. For instance, 1/2" PeX tubing is the same size as 1/2" copper tubing. 1/2" PVC on the other hand is not the same size as 1/2" tubing, and therefore requires either a threaded male or female adapter to connect them. When used in agricultural irrigation, the singular form "pipe" is often used as a plural.

Pipe is available in rigid "joints", which come in various lengths depending on the material. Tubing, in particular copper, comes in rigid hard tempered "joints" or soft tempered (annealed) rolls. PeX and CPVC tubing also comes in rigid "joints" or flexible rolls. The temper of the copper, that is whether it is a rigid "joint" or flexible roll, does not affect the sizing.

The thicknesses of the water pipe and tube walls can vary. Pipe wall thickness is denoted by various schedules or for large bore polyethylene pipe in the UK by the Standard Dimension Ratio (SDR), defined as the ratio of the pipe diameter to its wall thickness. Pipe wall thickness increases with schedule, and is available in schedules 20, 40, 80, and higher in special cases. The schedule is largely determined by the operating pressure of the system, with higher pressures commanding greater thickness. Copper tubing is available in four wall thicknesses: type DWV (thinnest wall; only allowed as drain pipe per UPC), type 'M' (thin; typically only allowed as drain pipe by IPC code), type 'L' (thicker, standard duty for water lines and water service), and type 'K' (thickest, typically used underground between the main and the meter). Because piping and tubing are commodities, having a greater wall thickness implies higher initial cost. Thicker walled pipe generally implies greater durability and higher pressure tolerances.

Wall thickness does not affect pipe or tubing size.1/2" L copper has the same outer diameter as 1/2" K or M copper. The same applies to pipe schedules. As a result, a slight increase in pressure losses is realized due to a decrease in flowpath as wall thickness is increased. In other words, 1 foot of 1/2" L copper has slightly less volume than 1 foot of 1/2 M copper.

Źródło: https://en.wikipedia.org/wiki/Plumbing


About superheated steam boiler

Most boilers produce steam to be used at saturation temperature; that is, saturated steam. Superheated steam boilers vaporize the water and then further heat the steam in a superheater. This provides steam at much higher temperature, but can decrease the overall thermal efficiency of the steam generating plant because the higher steam temperature requires a higher flue gas exhaust temperature.citation needed There are several ways to circumvent this problem, typically by providing an economizer that heats the feed water, a combustion air heater in the hot flue gas exhaust path, or both. There are advantages to superheated steam that may, and often will, increase overall efficiency of both steam generation and its utilization: gains in input temperature to a turbine should outweigh any cost in additional boiler complication and expense. There may also be practical limitations in using wet steam, as entrained condensation droplets will damage turbine blades.

Superheated steam presents unique safety concerns because, if any system component fails and allows steam to escape, the high pressure and temperature can cause serious, instantaneous harm to anyone in its path. Since the escaping steam will initially be completely superheated vapor, detection can be difficult, although the intense heat and sound from such a leak clearly indicates its presence.




Źródło: https://en.wikipedia.org/wiki/Boiler#Superheated_steam_boilers



© 2019 http://informator.stalowa-wola.pl/